首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4417篇
  免费   514篇
  国内免费   1960篇
  2024年   9篇
  2023年   130篇
  2022年   198篇
  2021年   259篇
  2020年   229篇
  2019年   248篇
  2018年   285篇
  2017年   228篇
  2016年   255篇
  2015年   210篇
  2014年   281篇
  2013年   360篇
  2012年   228篇
  2011年   267篇
  2010年   226篇
  2009年   250篇
  2008年   296篇
  2007年   269篇
  2006年   270篇
  2005年   269篇
  2004年   236篇
  2003年   212篇
  2002年   179篇
  2001年   136篇
  2000年   158篇
  1999年   120篇
  1998年   105篇
  1997年   99篇
  1996年   92篇
  1995年   88篇
  1994年   80篇
  1993年   66篇
  1992年   86篇
  1991年   74篇
  1990年   51篇
  1989年   44篇
  1988年   41篇
  1987年   34篇
  1986年   45篇
  1985年   24篇
  1984年   27篇
  1983年   16篇
  1982年   25篇
  1981年   20篇
  1980年   13篇
  1978年   12篇
  1977年   8篇
  1976年   10篇
  1973年   5篇
  1972年   5篇
排序方式: 共有6891条查询结果,搜索用时 15 毫秒
61.
用快速傅里叶转换(FFT)技术分析了图形视网膜电图(PERG)的空间和时间调谐特性。PERG 的二次谐波在较高的空间频率(>0.46周/度)逐渐下降,与 PERG振幅的变化相似,但显示明显的低空间频率衰减。空间和时间调谐特性存在一定的相关。引起最大二次谐波振幅的最佳时间频率,在低空间频率时(<0.23周/度)由低频(≤3.91Hz)移至 7.81Hz。  相似文献   
62.
程天亮  王新平  马雄忠  潘颜霞 《生态学报》2022,42(16):6778-6789
干旱区灌丛植被空间格局受多种物理和生态过程影响,能够指示生态系统的状态。研究通过量化灌丛斑块大小的空间分布来评估阿拉善高原东南部覆沙荒漠植被生态系统的状态,采用点格局分析法分析灌木种群的相互关系,以阐明不同灌木种在斑块格局形成中的作用,并结合土壤条件及下垫面粗糙度等指标验证评估的准确性,探讨灌丛空间格局差异的内在机理。结果表明,研究区样方2灌丛斑块大小符合截尾幂律分布,其他样方符合对数正态分布,前者的空间结构及生境条件均优于后者,说明植被空间格局可以准确表征生态系统状态。在局地尺度上灌木种内和种间呈现不同的相互关系,以竞争关系为主导是导致斑块破碎化的主要驱动机制。小灌木(如猫头刺)的种内互利关系有利于促进多样化斑块形态的形成,而大灌木(如沙冬青和蒙古扁桃)种间的互利作用则有利于形成异质性更强的复杂空间格局。基于灌丛斑块的空间格局评估生态系统状态,可为保护和恢复生态脆弱区受损植被提供重要的借鉴。  相似文献   
63.
BackgroundKnowledge on Bi metabolism in laboratory animals refers to studies at “extreme” exposures, i.e. pharmacologically relevant high-doses (mg kg−1 b.w.) in relation to its medical use, or infinitesimal doses (pg kg−1b.w.) concerning radiobiology protection and radiotherapeutic purposes. There are no specific studies on metabolic patterns of environmental exposure doses (ultratrace level, μg kg−1 b.w.), becoming in this context Bi a “heavy metal fallen into oblivion”. We previously reported the results of the metabolic fate of ultratrace levels of Bi in the blood of rats [1]. In reference to the same study here we report the results of the retention and tissue binding of Bi with intracellular and molecular components.MethodsAnimals were intraperitoneally injected with 0.8 μg Bi kg−1 b.w. as 205+206Bi(NO)3, alone or in combination with 59Fe for the radiolabeling of iron proteins. The use of 205+206Bi radiotracer allowed the determination of Bi down to pg fg−1 in biological fluids, tissues, subcellular fractions, and biochemical components isolated by differential centrifugation, size exclusion chromatography, solvent extraction, precipitation, immunoprecipitation and dialysis.Main findingsAt 24 h post injection the kidney contained by far the highest Bi concentration (10 ng g−1 wt.w.) followed by the thymus, spleen, liver, thyroid, trachea, femur, lung, adrenal gland, stomach, duodenum and pancreas (0.1 to 1.3 ng g−1 wt.w.). Brain and testis showed smaller but consistently significant concentrations of the element (0.03 ng g−1 wt.w). Urine was the predominant route of excretion. Intracellularly, liver, kidney, spleen, testis, and brain cytosols displayed the highest percentages (35%–58%) of Bi of homogenates. Liver and testis nuclei were the organelles with the highest Bi content (24 % and 27 %). However, when the recovered Bi of the liver was recorded as percent of total recovered Bi divided by percent of total recovered protein the lysosomes showed the highest relative specific activity than in other fractions. In the brain subcellular fractions Bi was incorporated by neuro-structures with the protein and not lipidic fraction of the myelin retaining 18 % of Bi of the total homogenate. After the liver intra-subcellular fractionation: (i) 65 % of the nuclear Bi was associated with the protein fraction of the nuclear membranes and 35 % with the bulk chromatin bound to non-histone and DNA fractions; (ii) about 50 % of the mitochondrial Bi was associated with inner and outer membranes being the other half recovered in the intramitochondrial matrix; (iii) in microsomes Bi showed a high affinity (close to 90 %) for the membranous components (rough and smooth membranes); (iv) In the liver cytosol three pools of Bi-binding proteins (molecular size > 300 kDa, 70 kDa and 10 kDa) were observed with ferritin and metallothionein–like protein identified as Bi-binding biomolecules. Three similar protein pools were also observed in the kidney cytosol. However, the amount of Bi, calculated in percent of the total cytosolic Bi, were significantly different compared to the corresponding pools of the liver cytosol.ConclusionsAt the best of our knowledge the present paper represents the first in vivo study, on the basis of an environmental toxicology approach, aiming at describing retention and binding of Bi in the rat at tissue, intracellular and molecular levels.  相似文献   
64.
Hunting affects a considerably greater area of the tropical forest biome than deforestation and logging combined. Often even large remote protected areas are depleted of a substantial proportion of their vertebrate fauna. However, understanding of the long‐term ecological consequences of defaunation in tropical forests remains poor. Using tree census data from a large‐scale plot monitored over a 15‐year period since the approximate onset of intense hunting, we provide a comprehensive assessment of the immediate consequences of defaunation for a tropical tree community. Our data strongly suggest that over‐hunting has engendered pervasive changes in tree population spatial structure and dynamics, leading to a consistent decline in local tree diversity over time. However, we do not find any support for suggestions that over‐hunting reduces above‐ground biomass or biomass accumulation rate in this forest. To maintain critical ecosystem processes in tropical forests increased efforts are required to protect and restore wildlife populations.  相似文献   
65.
66.
Tarsiers are small nocturnal primates with a long history of fuelling debate on the origin and evolution of anthropoid primates. Recently, the discovery of M and L opsin genes in two sister species, Tarsius bancanus (Bornean tarsier) and Tarsius syrichta (Philippine tarsier), respectively, was interpreted as evidence of an ancestral long-to-middle (L/M) opsin polymorphism, which, in turn, suggested a diurnal or cathemeral (arrhythmic) activity pattern. This view is compatible with the hypothesis that stem tarsiers were diurnal; however, a reversion to nocturnality during the Middle Eocene, as evidenced by hyper-enlarged orbits, predates the divergence of T. bancanus and T. syrichta in the Late Miocene. Taken together, these findings suggest that some nocturnal tarsiers possessed high-acuity trichromatic vision, a concept that challenges prevailing views on the adaptive origins of the anthropoid visual system. It is, therefore, important to explore the plausibility and antiquity of trichromatic vision in the genus Tarsius. Here, we show that Sulawesi tarsiers (Tarsius tarsier), a phylogenetic out-group of Philippine and Bornean tarsiers, have an L opsin gene that is more similar to the L opsin gene of T. syrichta than to the M opsin gene of T. bancanus in non-synonymous nucleotide sequence. This result suggests that an L/M opsin polymorphism is the ancestral character state of crown tarsiers and raises the possibility that many hallmarks of the anthropoid visual system evolved under dim (mesopic) light conditions. This interpretation challenges the persistent nocturnal–diurnal dichotomy that has long informed debate on the origin of anthropoid primates.  相似文献   
67.
68.
The cellular levels of O-glucosides of 3H-(diH)Z and 3H-(diH)[9R]Z, the major short-term metabolites of 3H-(diH)Z having been exogenously supplied to photoautotrophically growing suspension cell cultures of Chenopodium rubrum, decreased significantly during further culture, irrespective of whether the cells were maintained in the stationary phase or were transferred to conditions restoring cell divison. Metabolism of both compounds was more pronounced during the active growth phase than during the stationary phase. The O-glucosides were converted preferentially to polar compounds of as yet unknown nature, which were partly excreted into the medium. The cellular pools of both glycosides remained compartmented within the vacuole. In contrast to the O-glycosides, the small cellular pools of the aglycones 3H-(diH)Z and 3H-(diH)[9R]Z maintained their level during the experimental period of 30 days. Small amounts of the glucosides, as well as of the aglycones, were recovered from the medium and could have resulted from the lysis of a few cells. The results demonstrate, for the first time, that O-glucosides of cytokinins are not irreversibly deposited within the vacuole of plant cells but may serve to maintain a small, but more or less constant pool of extra-vacuolar, presumably cytosolic, aglycones. (DiH)Z and its derivatives could be demonstrated to be endogenous cytokinins of Chenopodium rubrum suspension cultured cells occurring along with those of the isopentenyladenine and zeatin types.  相似文献   
69.
With the goal of understanding how nervous systems produce activity and respond to the environment, neuroscientists turn to model systems that exhibit the activity of interest and are accessible and amenable to experimental methods. The stomatogastric nervous system (STNS) of the American lobster (Homarus americanus; also know was the Atlantic or Maine lobster) has been established as a model system for studying rhythm generating networks and neuromodulation of networks. The STNS consists of 3 anterior ganglia (2 commissural ganglia and an oesophageal ganglion), containing modulatory neurons that project centrally to the stomatogastric ganglion (STG). The STG contains approximately 30 neurons that comprise two central pattern generating networks, the pyloric and gastric networks that underlie feeding behaviors in crustaceans1,2. While it is possible to study this system in vivo3, the STNS continues to produce its rhythmic activity when isolated in vitro. Physical isolation of the STNS in a dish allows for easy access to the somata in the ganglia for intracellular electrophysiological recordings and to the nerves of the STNS for extracellular recordings. Isolating the STNS is a two-part process. The first part, dissecting the stomach from the animal, is described in an accompanying video article4. In this video article, fine dissection techniques are used to isolate the STNS from the stomach. This procedure results in a nervous system preparation that is available for electrophysiological recordings.  相似文献   
70.
Abstract: Remote camera traps are becoming an increasingly popular, affordable, and valuable tool for wildlife research. However, theft and vandalism of these camera systems can result in substantial financial loss and loss of valuable data. We developed an adjustable steel camera security box to protect our Cuddeback® (Non Typical, Inc., Park Falls, WI) digital scouting cameras. Our cameras were deployed for 160 days and experienced no theft or vandalism during that time. Our armored camera box successfully protected our equipment and data, can be sized to accommodate any brand of camera, and can be used in a variety of field situations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号